A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain.

نویسندگان

  • Carlene Dyer
  • Eric Blanc
  • Anja Hanisch
  • Henry Roehl
  • Georg W Otto
  • Tian Yu
  • M A Basson
  • Robert Knight
چکیده

FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the role of Wnt signaling and its interactions with FGF signaling during midbrain neurogenesis

Interactions between FGF and Wnt/ bcat signaling control development of the midbrain. The nature of this interaction and how these regulate patterning, growth and differentiation is less clear, as it has not been possible to temporally dissect the effects of one pathway relative to the other. We have employed pharmacological and genetic tools to probe the temporal and spatial roles of FGF and W...

متن کامل

Spatially discrete FGF-mediated signalling directs glial morphogenesis.

Neurons provide critical signals that regulate both the number and differentiation of glia. In addition, glia are attracted to and enwrap neuronal axonal processes. FGF-like signalling is thought to be one of the many potential axon-derived morphogenetic signals, however, the multiple roles of FGFs have made experimental tests of these signals difficult in vivo. In the Drosophila FGF receptor m...

متن کامل

13-P044 Sip1/Zfhx1b is a regulator of Wnt–β-catenin signaling during early midbrain and anterior hindbrain development

Activin A/TGFb, FGF, Wnt and BMP signalling are crucial for the self-renewal and early differentiation of human embryonic stem cells (hESCs). However, the mechanism of how they coordinate to regulate these two processes is unclear. To address this question, we treated hESCs with graded concentrations of these growth factors and their inhibitors separately and in combination and carried out comp...

متن کامل

Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation

Activating mutations in fibroblast growth factor receptor 2 (FGFR2) cause several craniosynostosis syndromes by affecting the proliferation and differentiation of osteoblasts, which form the calvarial bones. Osteoblasts respond to FGF with increased proliferation and inhibition of differentiation. We analyzed the gene expression profiles of osteoblasts expressing FGFR2 activating mutations (C34...

متن کامل

Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain.

Fibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We studied how FGF receptors (FGFRs) regulate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 141 1  شماره 

صفحات  -

تاریخ انتشار 2014